8.3.. Izračunati sumu prirodnih brojeva u intervalu od k do n koji nisu djeljivi sa a.
Opis rješenja: Iz teksta zadatka slijedi:
Tekst zadatka: |
Suma |
prirodnih brojeva |
od k |
do n |
nisu djeljivi sa a. |
Elementi rješenja |
Suma s |
Kontrolna varijabla i |
Kontrolna varijabla i |
Logički izraz ponavljanja |
Logički izraz djeljivosti |
Ulaz |
|
|
k? |
n? |
a? |
Početna vrijednost |
s = 0 |
|
i = k |
|
|
Ponavljanje |
|
i = i + 1 |
|
i <= n |
|
Djeljivost |
|
|
|
|
i MOD a <> 0 |
Obrada |
s = s + i |
|
|
|
|
Izlaz |
s |
|
k |
n |
a |
Grafički dijagram toka |
Tekstualni dijagram toka |
|
- učitati granice intervala sabiranja (k, n)
broj sa kojim se provjerava djeljivost (a)
- početna vrijednost sume (s=0)
- početne vrijednosti za i (i = k)
- početak petlje
- ako i nije djeljivo sa a formirati novu sumu (s=s+i)
- uvećaj vrijednost kontrolne promjenljive (i=i+1)
- sve dok je promjenljiva i manja ili jednaka n idi na korak 4 inače izađi iz petlje
- ispisati granice (k, n), broj sa kojim se dijeli a i izračunatu vrijednost sumu s
- kraj
|
Izvršavanje:
k? 3
n? 13
a? 6
S = 0
i = 3 S = 3
i = 4 S = 7
i = 5 S = 12
i = 7 S = 19
i = 8 S = 27
i = 9 S = 36
i = 10 S = 46
i = 11 S = 57
i = 13 S = 70
Index
|
|